Private Outsourcing of Polynomial Evaluation and Matrix Multiplication Using Multilinear Maps
نویسندگان
چکیده
Verifiable computation (VC) allows a computationally weak client to outsource the evaluation of a function on many inputs to a powerful but untrusted server. The client invests a large amount of off-line computation and gives an encoding of its function to the server. The server returns both an evaluation of the function on the client’s input and a proof such that the client can verify the evaluation using substantially less effort than doing the evaluation on its own. We consider how to privately outsource computations using privacy preserving VC schemes whose executions reveal no information on the client’s input or function to the server. We construct VC schemes with input privacy for univariate polynomial evaluation and matrix multiplication and then extend them such that the function privacy is also achieved. Our tool is the recently developed mutilinear maps. The proposed VC schemes can be used in outsourcing private information retrieval (PIR).
منابع مشابه
Algebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملSeparation Between Read-once Oblivious Algebraic Branching Programs (ROABPs) and Multilinear Depth Three Circuits
We show an exponential separation between two well-studied models of algebraic computation, namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In particular we show the following: 1. There exists an explicit n-variate polynomial computable by linear sized multilinear depth three circuits (with only two product gates) such that every ROABP comp...
متن کاملCryptanalysis of GGH15 Multilinear Maps
We describe a cryptanalysis of the GGH15 multilinear maps. Our attack breaks the multipartite key-agreement protocol in polynomial time by generating an equivalent user private key; it also applies to GGH15 with safeguards. We also describe attacks against variants of the GGH13 multilinear maps proposed by Halevi (ePrint 2015/866) aiming at supporting graph-induced constraints, as in GGH15.
متن کاملPrivacy preserving, verifiable and efficient outsourcing algorithm for matrix multiplication to a malicious cloud server
Matrix Multiplication is a basic engineering and scientific problem, which has application in various domains. There exists many cryptographic solutions for secure computation of matrix multiplication, but cryptographic preamble makes them infeasible for outsourcing with large input size to the cloud server. In this paper, we propose a privacy-preserving, verifiable and efficient algorithm for ...
متن کاملSmall-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications
The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within P. In this paper, we study the algebraic formula complexity of multiplying d many 2×2 matrices, denoted IMMd, and show that the well-known divide-andconquer algorithm cannot be significantly impro...
متن کامل